Crossed complexes and chain complexes with operators ∗ by RONALD BROWN

نویسنده

  • PHILIP J. HIGGINS
چکیده

Chain complexes with a group of operators are a well known tool in algebraic topology, where they arise naturally as the chain complex C∗X̃ of cellular chains of the universal cover X̃ of a reduced CW -complex X. The group of operators here is the fundamental group of X. J.H.C. Whitehead in his classical but little read paper [31] showed that the chain complex C∗(X̃) is useful for the homotopy classification of maps between non-simply connected spaces (see below). His methods must have seemed at the time to be circuitous. In modern parlance, he introduced the categories CW of CW -complexes, HS of homotopy systems, and FCC of free chain complexes with operators, together with functors1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The classifying space of a crossed complex

The aim of this paper is to show one more facet of the role of crossed complexes as generalisations of both groups (or groupoids) and of chain complexes. We do this by defining and establishing the main properties of a classifying space functor B: mia -> SToft from the category of crossed complexes to the category of spaces. The basic example of a crossed complex is the fundamental crossed comp...

متن کامل

Cubical abelian groups with connections are equivalent to chain complexes

The theorem of the title is deduced from the equivalence between crossed complexes and cubical ω-groupoids with connections proved by the authors in 1981. In fact we prove the equivalence of five categories defined internally to an additive category with kernels.

متن کامل

Tensor Products and Homotopies for Ω-groupoids and Crossed Complexes∗

Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product...

متن کامل

Crossed complexes and higher homotopy groupoids as non commutative tools for higher dimensional local-to-global problems

We outline the main features of the definitions and applications of crossed complexes and cubical ω-groupoids with connections. These give forms of higher homotopy groupoids, and new views of basic algebraic topology and the cohomology of groups, with the ability to obtain some non commutative results and compute some homotopy types in non simply connected situations.

متن کامل

Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems

We outline the main features of the definitions and applications of crossed complexes and cubical ωgroupoids with connections. These give forms of higher homotopy groupoids, and new views of basic algebraic topology and the cohomology of groups, with the ability to obtain some non commutative results and compute some homotopy types.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008